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Abstract
We derive an effective spin Hamiltonian for the one-dimensional half-filled
alternating Hubbard model in the limit of strong on-site repulsion. We show that
the effective Hamiltonian is a spin S = 1/2 Heisenberg chain with asymmetric
next-nearest-neighbour (nnn) exchange.

1. Introduction

During the last two decades the correlation induced metal–insulator (Mott) transition has
been a challenging problem in condensed matter physics [1]. In most cases the breaking of
spatial symmetry is a prerequisite for a Mott insulator [2]. The undoped high-Tc copper-oxide
materials are famous examples of such Mott insulators [3]. However, the one-dimensional
Hubbard model [4]

HHub = t
∑
i, j,α

Ni, j c
†
i,αc j,α + U

∑
i

ni,↑ni,↓ (1)

at half-filling represents a case where dynamical generation of a charge gap is not connected
with the breaking of a discrete symmetry [5]. In equation (1) we have used standard notations:
ni,α = c†

i,αci,α, U is the Hubbard on-site repulsive interaction, and Ni, j = 1 if i and j are
labels for neighbouring sites and equals zero otherwise. Thus the kinetic part represents hops
between neighbouring sites and the interaction part gives contributions only from electrons on
the same site. At half-filling the exact solution shows a uniform ground state with exponentially
suppressed density correlations [6] and gapless SU(2) symmetric spin degrees of freedom [7].
This is in agreement with the large-U expansion result, that at U � |t| the model (1) is
equivalent to the effective spin S = 1/2 Heisenberg antiferromagnet Hamiltonian [8],

HHeis = J
∑

i

Si · Si+1 + J ′ ∑
i

Si · Si+2, (2)
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where J = 4t2/U(1 − 4t2/U 2), J ′ = 4t4/U 3 in the fourth-order perturbation. Several very
elegant mathematical tools have been developed for calculation of the effective spin-chain
Hamiltonians in higher orders [10–12]. However, in agreement with the exact solution [5],
higher-order terms are irrelevant and the ground state remains featureless.

Discussions of the Mott–Hubbard transition within the framework of Hubbard type models
are generally restricted to lattices of equivalent sites. However, the less common case where
the spatial invariance of the system is broken via the introduction of two types of atoms, say
‘anions’ and ‘cations’, has attracted much recent interest. In the simplest case of a two-site
ionic generalization of the Hubbard model we obtain a Hamiltonian of the two-band Hubbard
model [13]

H = t
∑
i, j,α

Ni, j c
†
i,αc j,α +

�

2

∑
i,α

(
n2i,α − n2i+1,α

)
+ Ue

∑
i

n2i,↑n2i,↓ + Uo

∑
i

n2i+1,↑n2i+1,↓.

(3)

In the limit � = 0 and Ue = Uo = U equation (3) reduces to the ordinary Hubbard model.
The limit Ue = Uo = U , � �= 0, is called the ionic Hubbard model (IHM) [14]. In this paper
we study the alternating Hubbard model (AHM) [15] obtained from equation (3) in the limit
� = 0.

The IHM and the AHM describe two different ways in which the lattice invariance can
be broken. In the IHM the broken translational symmetry is already traced by non-interacting
electrons, via the single-electron potential energy difference between neighbouring sites (�).
In marked contrast with the IHM the lattice unit in the AHM is doubled dynamically, via the
different two-electron on-site repulsion energy on even (Ue) and odd (Uo) sites.

Current interest in the study of the Mott transition in 1D models with broken translational
symmetry was triggered by the bosonization analysis of the ionic Hubbard model (IHM) by
Fabrizio, Nersesyan and Gogolin (FGN) [16]. At U = 0 the IHM is a regular band insulator
with long-range ordered charge-density wave (CDW), while in the strong-coupling limit at
U � t,� it is a Mott insulator with a charge gap and gapless spin sector. The spin sector is also
given by the same Heisenberg chain (2), but with slightly renormalized coupling constants [14]

J = 4t2

U

[
1

1 − λ2
− 4t2

U 2

(1 + 4λ2 − λ4)

(1 − λ2)3

]
, J ′ = 4t4

U 3

(1 + 4λ2 − λ4)

(1 − λ2)3
, (4)

where λ = �/U .
The bosonization analysis shows that the CDW–Mott insulator transition has a complicated

two-step nature [16]: with increasing U there is first an Ising type transition from a CDW band
phase into a LRO dimerized phase at U c

ch. With further increase of the Hubbard repulsion,
at U c

sp > U c
ch a continuous Kosterlitz–Thouless transition takes place from the dimerized into

an MI phase. The charge gap vanishes only at U = U c
ch, while the spin sector is gapless

for U > U c
sp. This phase diagram was later confirmed by various numerical and analytical

studies [17–21]. Moreover, these numerical studies reveal a rather complex nature of the
strong-coupling, U � �, t , insulating phase of the IHM. Although the spin sector of the IHM
in the strong-coupling limit is qualitatively similar to that of the ordinary Hubbard model, the
ground state is characterized by an LRO CDW pattern and therefore shows broken translational
symmetry [18–20].

In this paper we derive the effective spin Hamiltonian in the strong-on-site-repulsion limit
Ue, Uo � t of the AHM. As we show below, in marked contrast with the ordinary Hubbard and
the ionic Hubbard models, in the case of AHM the effective spin Hamiltonian is not translational
invariant and is given by a frustrated Heisenberg chain with alternating next-nearest-neighbour
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exchange

Heff = J
∑

i

Si · Si+1 +
∑

i

(J ′ − (−1)iδ J ′)Si · Si+2, (5)

where

J = 2t2

(
1

Uo
+

1

Ue

)
− 2t4

(
3

U 3
o

+
3

U 3
e

+
1

U 2
o Ue

+
1

UoU 2
e

)
, (6)

J ′ = 2t4

(
1

U 3
o

+
1

U 3
e

)
, δ J ′ = 2t4 Uo − Ue

U 2
o U 2

e
. (7)

The obtained effective Hamiltonian is the S = 1
2 shark-tooth Hamiltonian [9], the limiting

case of which (Ue = Uo = U ) is a well known result for the Hubbard model.

2. The strong-coupling expansion approach

In this paper we apply the method developed by MacDonald et al in the case of the ordinary
Hubbard chain [11] to obtain the effective spin Hamiltonian for the one-dimensional alternating
Hubbard model given by the Hamiltonian HAHM = T̂ + V̂ , where

T̂ = t
∑
i, j,α

Ni, j c
†
i,αc j,α (8)

V̂ = Ue

∑
i

n2i,↑n2i,↓ + Uo

∑
i

n2i+1,↑n2i+1,↓. (9)

In what follows we consider the strong-coupling limit, assuming Ue > Uo � |t|. In
contrast to the case of the ordinary Hubbard model where subbands can be classified by the
total number of double-occupied states (doublons) Nd, in the case of AHM we have to deal
with a system where each band is characterized by two different numbers: the number of
doubly occupied sites in even and odd sublattices, denoted by Nde and Ndo respectively. The
hopping term mixes states from these subbands. The ‘unmixing’ of the AHM subbands can
be achieved by introducing suitable linear combinations of the uncorrelated basic states. The
S matrix for this transformation, and the transformed Hamiltonian,

Heff = eiSHAHMe−iS ,

are generated by an iterative procedure, which results in an expansion in powers of the hopping
integral t divided by on-site energies Ue and/or Uo.

This expansion is based on a separation of the kinetic part of the Hamiltonian into three
terms: T1 which increases the number of doubly occupied sites by one, T−1 which decreases the
number of doubly occupied sites by one and T0 which leaves the number of doubly occupied
sites unchanged. In addition, in the case of the alternating Hubbard model each of these terms
splits into several different terms, depending on whether corresponding hopping process takes
place from even to odd sites or vice versa.

In particular, we split the T0 term into three separate hopping processes:

T0 = T 0
0 + T de

0 + T do
0 , (10)

where

T 0
0 = t

∑
i, j,α

Ni, j hi,−αc†
i,αc j,αh j,−α, (11)

is a ‘hole’ hopping term,

T de
0 = t

∑
i, j,α

N2i, j n2i,−αc†
2i,αc j,αn j,−α, (12)
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is a ‘pair’ hopping term which hops a pair to an even site and

T do
0 = t

∑
i, j,α

N2i+1, j n2i+1,−αc†
2i+1,αc j,αn j,−α, (13)

is a ‘pair’ hopping term which hops a pair to an odd site. Here hi,α = 1 − ni,α .
The term which increases the number of doubly occupied sites by one is also separated

into two terms, T1 = T e
1 + T o

1 , where

T e
1 = t

∑
i, j,α

N2i, j n2i,−αc†
2i,αc j,αh j,−α, (14)

is the term which increases the number of doubly occupied sites by one on the sublattice of
even sites and

T o
1 = t

∑
i, j,α

N2i+1, j n2i+1,−αc†
2i+1,αc j,αh j,−α, (15)

is the term which increases the number of doubly occupied sites by one on the sublattice of
odd sites.

Similarly, the term which decreases the number of doubly occupied sites by one is also
separated into two terms, T−1 = T e

−1 + T o
−1, where

T e
−1 = t

∑
i, j,α

Ni,2 j hi,−αc†
i,αc2 j,αn2 j,−α (16)

and

T o
−1 = t

∑
i, j,α

Ni,2 j+1hi,−αc†
i,αc2 j+1,αn2 j+1,−α, (17)

are the terms which decrease the number of doubly occupied sites by one on the sublattices of
even and odd sites, respectively.

One can easily check the following commutation relations:

[V̂ , T q
m ] = (m + δm,0)�q T q

m , (18)

where

�q =




Uq, q = e, o

(Ue − Uo), q = de

(Uo − Ue), q = do

0, q = 0.

(19)

We must emphasize that equation (18) is true in all cases where allowed hopping processes
connect only sublattices with different on-site repulsions.

Let us now start to search for such a unitary transformation S, which eliminates hops
between states with different numbers of doubly occupied sites:

H′ = eiSHe−iS = H + [iS,H] + 1
2 [iS, [iS,H]] + · · · . (20)

We follow the recursive scheme [11] which allows us to determine a transformation which
has the requested property to any desired order in t/U where U = (Ue + Uo)/2. To proceed
further we define

T (k)[{a}, {m}] = T a1
m1

T a2
m2 · · · T ak

mk
. (21)

Using equation (18) we can write

[V̂ , T (k)[{a}, {m}]] =
k∑

i=1

�ai (mi + δmi ,0)T (k)[{a}, {m}]. (22)
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H′(k) contains terms of order tk , denoted by H′[k], which couple states in different subbands.
By definition [V ,H′[k]] �= 0 and H′[k] can be expressed in the following way:

H′[k] =
∑
{a}

∑
{m}

C (k)
{a}({m})T (k)[{a}, {m}],

k∑
i=1

mi �= 0. (23)

If in each k th order step we choose S(k) = S(k−1) + S[k] , where S[k] is the solution of the
equation

[iS[k], V ] = −H′[k] (24)

and therefore given by

S[k] = −i
∑
a,{m}

C (k)
{a}({m})∑k

i=1 �ai (mi + δmi ,0)
T (k)[{a}, {m}],

k∑
i=1

mi �= 0, (25)

then the transformed Hamiltonian

H′(k+1) = eiS(k)He−iS(k)

(26)

contains terms of order tk/U k−1 which commute with the unperturbed Hamiltonian and mix
states within each subband only.

3. The Hubbard operators

To treat correlations properly, it is important to know whether at the beginning or at end of
the hopping process a particular site is doubly occupied or not. The introduction of so-called
Hubbard operators [22] provides us with the tool necessary for such a full description of the
local environment. The Xab

j -operator is determined on each site of the lattice and describes
all possible transitions between the local basis states: unoccupied |0〉, singly occupied with
‘up’-spin |+〉 and ‘down’-spin |−〉 and doubly occupied |2〉. The original electron creation
(annihilation) operators can be expressed in terms of the Hubbard operators in the following
way:

c†
i,α = Xα0

i + αX2−α
i ci,α = X0α

i + αX−α2
i . (27)

Correspondingly, in terms of creation (annihilation) operators the Hubbard operators have the
form

Xα0
i = c†

i,α(1 − ni,−α), X2α
i = −αc†

i,−αni,α,

Xα−α
i = c†

i,αci,−α, X20
i = −αc†

i,−αc†
i,α,

X00
i = (1 − ni,↑)(1 − ni,↓), X22

i = ni,↑ni,↓
Xαα

i = ni,α(1 − ni,−α).

(28)

The Hubbard operators which contain even (odd) number of electron creation and annihilation
operators are Bose-like (Fermi-like) operators. They obey the on-site multiplication rules
X pq

i Xrs
i = δq,r X ps

i and commutation relations

[X pq
i , Xrs

j ]± = δi j(δqr X ps
j ± δps Xrq

j ), (29)

where the upper sign corresponds to the case when both operators are Fermi-like; otherwise,
the lower sign should be adopted.
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It is straightforward to obtain that

T 0
0 = t

∑
i, j

∑
α

Ni, j Xα0
i X0α

j , (30)

T do
0 = t

∑
i, j

∑
α

N2i+1, j X2−α
2i+1 X−α2

j , T de
0 = t

∑
i, j

∑
α

N2i, j X2−α
2i X−α2

j (31)

T o
1 = t

∑
i, j

∑
α

αN2i+1, j X2−α
2i+1 X0α

j , T e
1 = t

∑
i, j

∑
α

αN2i, j X2−α
2i X0α

j (32)

T o
−1 = t

∑
i, j

∑
α

αNi,2 j+1 Xα0
i X−α2

2 j+1, T e
−1 = t

∑
i, j

∑
α

αNi,2 j Xα0
i X−α2

2 j . (33)

One can easily find that the spin S = 1/2 operators can be rewritten in terms of the
X-operators in the following way:

S+
i = c†

i,↑ci,↓ = X+−
i , S−

i = c†
i,↓ci,↑ = X−+

i , Sz
i = 1

2 (X++
i − X−−

i ). (34)

4. Effective Hamiltonian in the half-filled band case

In what follows we focus on the case of the half-filled band. In this particular case the minimum
of the interacting energy is reached in the subspace with one electron per site. Therefore, no
hops are possible without increasing the number of doubly occupied sites and for any state in
this subspace |�L S〉

T e
−1|�L S〉 = 0 T o

−1|�L S〉 = 0 T0|�L S〉 = 0. (35)

Equation (35) may be generalized to higher orders

T k[m]|�L S〉 = 0, (36)

if

Mk
n [m] ≡

k∑
i=n

mi < 0 (37)

for at least one value of n. Equation (36) can be used to eliminate many terms from the
expansion for H′ in the minimum 〈V̂ 〉 subspace. Thus, in the fourth order of T̂ , the perturbed
Hamiltonian has the form

H′(4) = − 1

Uo
T o

−1T o
1 − 1

Ue
T e

−1T e
1

− 1

U 3
o

T o
−1T 0

0 T 0
0 T o

1 − 1

U 2
o Ue

T e
−1T de

0 T 0
0 T o

1 − 1

UoU 2
e

T e
−1T 0

0 T de
0 T o

1

− 1

U 2
o Ue

T o
−1T do

0 T de
0 T o

1 − 1

U 3
e

T e
−1T 0

0 T 0
0 T e

1 − 1

UoU 2
e

T o
−1T do

0 T 0
0 T e

1

− 1

U 2
o Ue

T o
−1T 0

0 T do
0 T e

1 − 1

UoU 2
e

T e
−1T de

0 T do
0 T e

1 − 1

2U 3
o

T o
−1T o

−1T o
1 T o

1

+
1

U 3
o

T o
−1T o

1 T o
−1T o

1 +

(
1

2U 2
o Ue

+
1

2U 2
e Uo

)
T o

−1T o
1 T e

−1T e
1 +

1

U 3
e

T e
−1T e

1 T e
−1T e

1

− 1

2U 3
e

T e
−1T e

−1T e
1 T e

1 +

(
1

2U 2
o Ue

+
1

2U 2
e Uo

)
T e

−1T e
1 T o

−1T o
1

− 1

UoUe(Uo + Ue)
T o

−1T e
−1T o

1 T e
1 − 1

U 2
e (Uo + Ue)

T e
−1T o

−1T o
1 T e

1

− 1

UoUe(Uo + Ue)
T e

−1T o
−1T e

1 T o
1 − 1

U 2
o (Uo + Ue)

T o
−1T e

−1T e
1 T o

1 . (38)



Effective Hamiltonian for a half-filled Hubbard chain with alternating on-site interactions 5821

Using equations (30)–(34), one can easily rewrite the products of T -terms in (38) via the
Hubbard X-operators. Using the spin S = 1/2 operators in equation (34) one obtains

T o
−1T o

1 = T e
−1T e

1 = −2t2
∑

i

(
Si · Si+1 − 1

4

)
(39)

T o
−1T 0

0 T 0
0 T o

1 = T o
−1T do

0 T de
0 T o

1 = T e
−1T 0

0 T 0
0 T e

1 = T e
−1T de

0 T do
0 T e

1

= − 2t4
∑

i

(
Si · Si+1 − 1

4

)
(40)

T e
−1T de

0 T 0
0 T o

1 = T o
−1T 0

0 T do
0 T e

1 = −2t4
∑

i

(
Si · Si+1 − 1

4

)
+ 2t4

∑
i

(
S2i+1 · S2i+3 − 1

4

)
(41)

T e
−1T 0

0 T de
0 T o

1 = T o
−1T do

0 T 0
0 T e

1 = −2t4
∑

i

(
Si · Si+1 − 1

4

)
+ 2t4

∑
i

(
S2i · S2i+2 − 1

4

)
(42)

T o
−1T o

−1T o
1 T o

1 = T e
−1T e

−1T e
1 T e

1 = 8t4
∑

i, j �=i−1,i,i+1

(
Si · Si+1 − 1

4

)(
S j · S j+1 − 1

4

)
(43)

T o
−1T o

1 T o
−1T o

1 = T e
−1T e

1 T e
−1T e

1 = T o
−1T o

1 T e
−1T e

1 = T e
−1T e

1 T o
−1T o

1

= 4t4
∑
i, j

(
Si · Si+1 − 1

4

)(
S j · S j+1 − 1

4

)
(44)

T o
−1T e

−1T o
1 T e

1 = T e
−1T o

−1T o
1 T e

1 = T e
−1T o

−1T e
1 T o

1 = T o
−1T e

−1T e
1 T o

1

= 4t4
∑

i, j �=i−1,i,i+1

(
Si · Si+1 − 1

4

)(
S j · S j+1 − 1

4

)
. (45)

Therefore we find that in the fourth-order approximation the strong-coupling effective spin
Hamiltonian for the alternating Hubbard model is given by

Heff = J
∑

i

(
Si · Si+1 − 1

4

)
+J1

∑
i

(
S2i+1 · S2i+3 − 1

4

)
+ J2

∑
i

(
S2i · S2i+2 − 1

4

)
, (46)

where

J = 2t2

(
1

Uo
+

1

Ue

)
− 2t4

(
3

U 3
o

+
3

U 3
e

+
1

U 2
o Ue

+
1

UoU 2
e

)
, (47)

J1 = 2t4

(
1

U 3
o

+
1

U 3
e

+
Uo − Ue

U 2
o U 2

e

)
, (48)

J2 = 2t4

(
1

U 3
o

+
1

U 3
e

− Uo − Ue

U 2
o U 2

e

)
. (49)

The effective Hamiltonian thus obtained is that of a frustrated Heisenberg chain with alternating
next-nearest-neighbour exchange [23]. Note that the nnn exchange is larger for two spins
separated by a site with low on-site repulsion than for spins separated by a site with high
on-site repulsion.

5. Conclusion

In this paper we have derived the effective spin Hamiltonian which describes the low-energy
sector of the one-dimensional half-filled alternating Hubbard model in the limit of strong on-
site repulsion. The effective spin model is given by the Hamiltonian of the Heisenberg chain
with alternating next-nearest-neighbour exchange. This model has been intensively studied
in the last few years [23–27]. Unfortunately, conflicting results have been reported in these
studies regarding the relevance of the alternating nnn exchange. In some studies [23, 25, 27]
it was claimed that in the limit of small frustration, J ′/J < 0.5, the asymmetry of the nnn
exchange destabilizes the isotropic Heisenberg fixed point and leads to a new phase with
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gapless excitation spectrum and vanishing spin-wave velocity. However, other studies [24, 26]
claim that the alternating nnn exchange is an irrelevant perturbation. We believe that detailed
numerical studies of the phase diagram of the alternating Hubbard model may shed more light
on this topic. The weak-coupling bosonization analysis of the same model is in progress and
will be published separately.
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Appendix

Using the technique developed above it is straightforward to derive the strong-coupling
effective Hamiltonian in the case of the alternating ionic Hubbard model, equation (3), in
the limit � �= 0 and Ue �= Uo � �, t .

In this case the effective Hamiltonian is also given by the Heisenberg Hamiltonian with
alternating next-nearest-neighbour exchange, equation (46), but with the following exchange
coupling constants:

J = 2t2

(
1

Uo − �
+

1

Ue + �

)

− 2t4

[
4

(Ue + �)3
+

4

(Uo − �)3
− 1

Ue(Ue + �)2
− 1

(Uo − �)2Uo

+
4(Ue + Uo)

(Ue + �)2(Uo − �)2
− 1

(Ue + �)2Uo
− 1

Ue(Uo − �)2

− 2

(� + Ue)(Uo − �)Uo
− 2

Ue(� + Ue)(Uo − �)

]
, (50)

J1 = 2t4

[
1

(Ue + �)3
+

1

(Uo − �)3
+

Ue + Uo

(Ue + �)2(Uo − �)2
− 2

Uo(Ue + �)(Uo − �)

]
, (51)

J2 = 2t4

[
1

(Ue + �)3
+

1

(Uo − �)3
+

Ue + Uo

(Ue + �)2(Uo − �)2
− 2

Ue(Ue + �)(Uo − �)

]
. (52)

Note that in the case when the ionic term is large on the site with larger on-site repulsion,
i.e. Ue > Uo and � > 0, the asymmetry in the nnn exchange in the case of AIHM

δ J ′(� �= 0) = 2t4 (Ue − Uo)

UeUo(Ue + �)(Uo − �)
(53)

is larger than it is in the case of AHM

δ J ′(� = 0) = 2t4 (Ue − Uo)

U 2
e U 2

o

(54)

for � > 0 (� 	 Uo, Ue).
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